GABA Transporter Currents Activated by Protein Kinase A Excite Midbrain Neurons during Opioid Withdrawal
نویسندگان
چکیده
Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.
منابع مشابه
Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment
Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release,...
متن کاملβ-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons.
BACKGROUND AND PURPOSE Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are cruci...
متن کاملEnhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway.
Chronic morphine administration induces adaptations in neurons resulting in opioid tolerance and dependence. Functional studies have implicated a role for the periaqueductal gray area (PAG) in the expression of many signs of opioid withdrawal, but the cellular mechanisms are not fully understood. This study describes an increased efficacy, rather than tolerance, of opioid agonists at mu-recepto...
متن کاملNoradrenaline triggers GABAA inhibition of bed nucleus of the stria terminalis neurons projecting to the ventral tegmental area.
The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent pro...
متن کاملGIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner.
G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neuron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 45 شماره
صفحات -
تاریخ انتشار 2005